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Core Approach

e Focus on speed for finding a feasible solution
e No parallelization of the preventative problem
o Exploited multiple nodes for resiliency
e Selective simplifications of the problem formulation

e No integer rounding: MIP + NLP



Computational details

e Code was written in Python

o Added some overhead but sped up development
e \We coupled two optimization problems:

o Mixed integer linear program (CPLEX)

o  Continuous non-linear problem (IPOPT - cyipopt)

e Data read-in using functions provided in competition



An Overview of our Method - Preventative SCOPF
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An Overview of our Method - Preventative SCOPF
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Inputs to the
corrective solution



An Overview of our Method - Corrective SCOPF

Base case Objective:
solution Quadratic generator costs, full
formulation for loads _
Pgk, Xgk, tjk Contlngency
Constraints: solution

AC power flow equations
Ramping constraints

Continuous Non-linear Program
IPOPT



Simplification: Generator cost functions

e Quadratic approximation to generator costs

Marginal cost
Total cost

Total cost

Pg Pg




Simplification: Taps and Shunts

e Removed controllable shunts and transformer taps from the AC formulation

e Use of continuous variable relaxation sometimes back-fired

Score w/ varied taps | Score w/ fixed taps
and shunts and shunts

65,091,360 65,333,260




Simplification: Removed line switching
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Computational Speed Improvements
_ _ _ class problem(object):
Derived analytic formulation of the
. . def objective(self, x):
Jacobian and Hessian # The callback for calculating the objective

def gradient(self, x):
# The callback for calculating the gradient

Calculated in vectorized form def constraints(self, x):
# The callback for calculating the constraints

def jacobian(self, x):
# The callback for calculating the Jacobian

def hessian(self, x, lagrange, obj_factor):
# The callback for calculating the Hessian
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Computational Speed Improvements: Slack Variables

Try running AC code without slack variables first

AC code

) Find closest point to
No
(no slack variables) Converged? AC solution

Time Limit: 75%




Questions?



